Coding of time-varying hormonal signals in intracellular calcium spike trains.
نویسندگان
چکیده
In a variety of cell types extracellular hormonal stimuli varying in time are transfered across the cell membrane into repetitive spikes of the intracellular calcium concentration ([Ca2+]i). Distinct temporal patterns of [Ca2+]i spikes are capable of regulating the function and structure of target cells. Here, we investigate the ability of transmembrane signaling to encode time-varying hormonal stimulations (bandlimited Gaussian white noise) in a model of receptor-controlled [Ca2+]i oscillations. The encoding of hormonal signals in [Ca2+]i spike trains is quantified by using an information-theoretic approach allowing to estimate the hormonal stimulus from [Ca2+]i spike trains. Our results suggest that intracellular [Ca2+]i spike trains convey faithful information on temporal variations of extracellular hormonal concentrations at scales of 30-200 sec, corresponding to cut-off frequencies between 5 and 30 mHz of the random hormonal stimulation.
منابع مشابه
Coding efficiency and information rates in transmembrane signaling.
A variety of cell types responds to hormonal stimuli by repetitive spikes in the intracellular concentration of calcium ([Ca(2+)](i)) which have been demonstrated to encode information in their frequency, amplitude, and duration. These [Ca(2+)](i)-spike trains are able to specifically regulate distinct cellular functions. Using a mathematical model for receptor-controlled [Ca(2+)](i) oscillatio...
متن کاملDifferential coding of humoral stimuli by timing and amplitude of intracellular calcium spike trains.
The ubiquitous Ca2(+)-phosphoinositide pathway transduces extracellular signals to cellular effectors. Using a mathematical model, we simulated intracellular Ca2+ fluctuations in hepatocytes upon humoral stimulation. We estimated the information encoded about random humoral stimuli in these Ca2+ spike trains using an information-theoretic approach based on stimulus estimation methods. We demons...
متن کاملSpike inference from calcium imaging using sequential Monte Carlo methods.
As recent advances in calcium sensing technologies facilitate simultaneously imaging action potentials in neuronal populations, complementary analytical tools must also be developed to maximize the utility of this experimental paradigm. Although the observations here are fluorescence movies, the signals of interest--spike trains and/or time varying intracellular calcium concentrations--are hidd...
متن کاملCoding of time-varying signals in spike trains of linear and half-wave rectifying neurons.
The encoding of time-varying stimuli in linear and half-wave rectifying neurons is studied. The information carried in single spike trains is assessed by reconstructing part of the stimulus using mean square estimation methods. For the class of models considered here, the mean square error in the reconstructions and estimates of the rate of information transmission are computed analytically. Th...
متن کاملInformation transmission with spiking Bayesian neurons
Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 1998